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We consider the effects of blade mean loading on the noise generated by the interaction
between convected vorticity and a blade row. The blades are treated as flat plates
aligned at a non-zero incidence angle, δ, to the oncoming stream, and we take
harmonic components of the incident vorticity field with reduced frequency k, and
use asymptotic analysis in the realistic limit k � 1, δ � 1 with kδ = O(1). In a
previous paper (Peake & Kerschen, J. Fluid Mech., vol. 347 (1997), pp. 315–346) we
have analysed the sound radiated back upstream, but the field in the blade passages
and the sound radiated downstream are also of considerable practical interest, and
are considered in this paper. The flow is seen to consist of inner regions around
each leading edge, in which sound is generated by the local gust–airfoil and gust–
flow interactions, and an outer region in which the incident gust and the acoustic
radiation interact with the non-uniform mean flow and the other blades. It is shown
that the complicated multiple interactions between the blades can be represented by
images in potential–streamfunction space, yielding closed-form expressions for the
phase distortion experienced by sound waves propagating down the blade passages.
The acoustic radiation downstream of the cascade at O(1) distances is dominated
by the duct-mode beams that emanate from the passages, while the far downstream
field is generated by the diffraction of the duct modes by the trailing edges. The
modal amplitudes of the radiation field far downstream tend to be largest when
the mode direction is close to the propagation direction of the duct mode which
generated it, corresponding to the way (in uniform flow) in which the radiation from
a single blade passage tends to be beamed in the duct-mode directions. Although the
diffraction coefficient for the scattering from a single trailing edge is singular in these
directions, we show how uniformly valid expressions can be derived by combining the
trailing-edge fields in an appropriate way, thereby describing the larger amplitude in
the beam directions. The steady non-uniform flow downstream has the effect of tilting
the directions of the beams by O(δ) angles away from the duct-mode directions, which
are explicitly determined. Throughout this analysis it will be seen that the interaction
with the non-uniform mean flow introduces phase corrections of size O(kδ), which,
given the way in which interference effects between the multiple blades dominate
unsteady cascade flow, proves to be highly significant.
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1. Introduction
In Peake & Kerschen (1997, hereafter referred to as (I)), we considered the

interaction between convected vortical gusts of reduced frequency k and a cascade of
zero-thickness flat plates aligned at an angle δ to the oncoming flow. Using asymptotic
analysis in the limits k � 1, δ � 1 with kδ = O(1), we investigated the acoustic field
radiated upstream of the cascade. It turns out that in this asymptotic limit the
unsteady flow consists of inner regions around each leading edge scaling on the gust
wavelength, in which sound is generated by the interaction between the steady flow
and the gust, and by the blocking of the gust momentum by the blade. In the outer
region away from the leading edges the incident gust and the radiation are distorted
by their interaction with the mean flow. It is therefore shown in (I) that the upstream
radiation can be thought of as being generated by effective point sources located
at each leading edge, with directivity patterns that are a function of the radiation
angle (see Myers & Kerschen 1995, 1997). The way in which the radiation from
these sources propagates to the upstream observer, either directly or via diffraction
or reflection by other blades, is fully described in (I). However, no consideration was
given in (I) to the effects of the mean loading on the field downstream of the cascade
leading edges, either for the field in the blade passages or for the field downstream of
the trailing edges. In this paper we therefore aim to extend (I) by considering these
two areas, and it will be seen that while sound is still only generated near the leading
edges, the interaction of the unsteady field with the blades and the trailing edges will
be considerably more complicated than in the case of the upstream radiation.

A review of earlier work in this area has been given in (I), and we need not repeat
that here. We note, however, that extensive numerical calculations of the unsteady
lift and downstream radiation have been completed, both in terms of solution of
the full compressible Euler equations (see Verdon 1993) and in terms of solution of
Goldstein’s (1978) rapid distortion equations (e.g. Atassi, Subramaniam & Scott 1990;
Abdelhamid & Atassi 2000). Our approach here, however, is different in that we aim to
combine previous analytical and asymptotic work; in effect, the analysis presented here
and in (I) combines analysis of cascades in uniform flow (e.g. Koch 1971; Peake 1992,
1993) with that of isolated airfoils in non-uniform flow (e.g. Myers & Kerschen 1995).

In § 2 and § 3 we describe the mathematical formulation of the problem and
summarize those results from (I) which are required in the present study. In the
first instance we use potential–streamfunction coordinates aligned with the flow at
upstream infinity, and this proves particularly convenient since the cascade in physical
space is then mapped onto a cascade of straight-line segments in the new space as
well, and the gust is convected along lines of constant ψ . The effective sources located
at each leading edge produce sound waves which propagate downstream, potentially
undergoing multiple reflections by adjacent blades. In § 4 we show how this field can
be represented by an array of image sources, which yield a family of downstream-
propagating duct modes. When δ = 0 these waves form the familiar set of simple
duct modes, but for δ �= 0 it will be seen that quite considerable phase variations are
induced by the non-uniform mean flow.

In § 5 and § 6 we consider the flow downstream of the cascade. In all the foregoing
analysis it has proved convenient to use coordinates aligned with the mean flow
at upstream infinity, but for the radiation downstream it is preferable to make a
transformation to coordinates aligned with the mean flow at downstream infinity.
In physical space this means simply rotating the coordinate axes through the
cascade turning angle, but the transformation between the corresponding potential–
streamfunction spaces is more complicated, given that the difference between the



Mean loading 101

upstream and downstream steady flow speeds and densities, and the effect of the
mean circulation round each blade, must be included.

The field at O(1) distances downstream of the cascade is dominated by the duct-
mode beams, with the scattering by the trailing edges introducing only secondary
terms of relative order O(k−1/2). Fresnel regions lie along the edges of the beams,
and these gradually spread to encompass the full widths of the beams at downstream
distances of O(k).

In contrast to the near downstream field, the far downstream field is dominated
by the scattering of the duct modes by the trailing edges. We convert the infinite set
of scattered cylindrical waves to a finite sum over the cut-on radiation modes for
the downstream region. In the far downstream field, the main effects of the mean
loading appear as a modification of the effective cascade geometry in potential–
streamfunction space. The inclination of the blades to the downstream flow is O(δ);
however in typical cases it is numerically smaller than δ, and it follows that the
additional phase distortion experienced by the radiation as it propagates downstream
from the cascade has a less-marked effect than that found upstream of the cascade.
The radiation that exits the back of the cascade, however, has been strongly influenced
by mean loading effects. One particular feature of the far downstream radiation is
that the modal amplitudes tend to be largest when the modal propagation direction
is close to the ‘propagation direction’ of one of the duct modes. In uniform flow,
the far-field radiation from a given blade passage is beamed in these duct-mode
directions, and we show explicitly how the non-uniform mean flow has the effect of
tilting these directions by an O(δ) amount.

2. Mathematical formulation
The system under consideration and the mathematical formulation are fully

described in (I), and we provide only a brief description here. We consider an infinite
cascade of zero-thickness flat plates of length 2b∗ (the suffix ∗ denotes physical
quantities). The cascade stagger angle and leading-edge separation are α∗ and ∆∗
respectively, and we write d∗ = ∆∗ cos α∗, s∗ = ∆∗ sin α∗; see figure 1. The blades are
labelled n = 0, ±1, ±2, . . . , with the origin located at the leading edge of blade 0.
The mean flow far upstream has a uniform, subsonic speed U∞ and is aligned at a
non-zero angle-of-attack δ to the blades. We non-dimensionalize lengths by b∗, time
by b∗/U∞ and pressures by ρ∞U 2

∞, with ρ∞ the density at upstream infinity. We define
the upstream mean-flow Mach number M∞ = U∞/c∞, with c∞ the upstream speed of
sound, and consider only the subsonic case M∞ < 1.

In order to simplify subsequent analysis, we shall make a change of variables from
the physical x∗–y∗ space into φ–ψ space, where φ and ψ are the normalized potential
and streamfunction of the steady flow:

φ =
φ∗

U∞b∗
, ψ =

β∞ψ∗

U∞b∗
. (2.1)

The factor β∞ = (1 − M2
∞)1/2 in the definition of ψ corresponds to a Prandtl–Glauert

transformation. The physical cascade maps onto a cascade in φ–ψ space (see figure 2)
with stagger angle α and leading-edge separation ∆, where

α = tan−1[β∞ tan(α∗ − δ)], (2.2)

∆ = ∆∗(cos2(α∗ − δ) + β2
∞ sin2(α∗ − δ))1/2/b∗, (2.3)
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Figure 1. The cascade geometry in physical space. The x∗–y∗ and x̄∗–ȳ∗ axes are aligned with
the mean flow at upstream and downstream infinity respectively, and the acute angles between
the blades and the x∗- and x̄∗-axes are δ and δ̄.
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Figure 2. The cascade geometry in φ–ψ space.

and we set d = ∆ cosα, s = ∆ sinα. Note that the stagger angle α in φ–ψ space
is determined by the angle of the upstream flow relative to a line parallel to the
front face of the cascade. The arbitrary constants in φ and ψ are chosen such that
φ = ψ = 0 at the leading edge of blade zero in φ–ψ space. (This is the image of the
stagnation point for blade zero in physical space.) Due to the non-zero circulation
round each blade, the upper and lower surfaces of the trailing edge of blade zero are
mapped onto two different points in φ–ψ space, φ = l± ≡ 2b ∓ Γ/2; this point must
be accounted for when we consider scattering by the cascade trailing edges. Here
2b = 2 + O(δ) is the mean chord length in φ–ψ space, and U∞b∗Γ (< 0) is the mean
circulation around the blade. The numerical values of b and Γ for given cascade
parameters are determined using conformal mapping, as discussed below.
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We then require a description for the mean flow as a function of φ and ψ . The
required quantities are the normalized flow speed and the flow angle. Since we
suppose that δ � 1, the steady flow through the cascade can be determined using
thin-airfoil theory. A Prandtl–Glauert transformation then reduces the compressible
flow to an equivalent incompressible flow, so that the mean flow can be determined
using conformal mapping; full details are given in Robinson & Laurmann (1956) and
in (I). The O(δ) mean flow perturbation can then be expressed in terms of a complex
potential F and we have

ζ = ζ0 + δF (ζ0), (2.4)

where ζ = φ + iψ , ζ0 = φ0 + iψ0 = (x∗ + iβ∞y∗)/b∗, and the free constant in F is
chosen such that F (0) = 0. Then, since ζ = ζ0 + O(δ), the mean flow perturbation is
given by

q − iµ =
dF (ζ )

dζ
, (2.5)

where the normalized flow speed is U∗/U∞ = 1 + δq and the flow angle is δβ∞µ.
From the geometry and (2.5) it is clear that the boundary condition on the blade

surfaces is
∂Im[F ]

∂φ
=

1

β∞
. (2.6)

(This implies that the effective incidence angle of the blades in Prandtl–Glauert space
is δ/β∞.) The boundary condition can be integrated to give the value of Im[F ] on
blade n in the form

Im[F ] =
(φ − nd)

β∞
, (2.7)

and we will use this result repeatedly in our subsequent analysis.
We will be concerned with the interaction between the cascade and convected

vortical and entropic disturbances, and for definiteness we consider single-frequency
harmonic gusts, so that the unsteady velocity fluctuation associated with the gust
takes the form far upstream

v′ = εU∞(At, An, Az) exp(ik[φ + knψ + kzz − t]) as φ → −∞, (2.8)

where k is the gust reduced frequency (k = ω∗b∗/U∞, where ω∗ is the gust temporal
frequency) and the amplitude ε � 1. A similar representation holds for the entropy
disturbance s ′.

When considered as a function of physical position, the gust obeys the quasi-
periodic condition

v′(x∗ + ∆∗ t, t) = exp(iσ )v′(x∗, t), (2.9)

where t is the unit vector tangent to the front face of the cascade and the inter-blade
phase angle is σ = k(d + kns). Given the linearity of the problem and the periodicity
of the blade geometry in the t-direction, it follows that the unsteady field generated
by the interaction between the gust and the cascade must also obey (2.9) throughout
the fluid, both upstream and downstream of the cascade.

The gust vorticity and entropy are convected and distorted by the non-uniform
mean flow according to rapid distortion theory (Goldstein 1978). Kerschen & Balsa
(1981) have derived an analytical expression for the distorted forms of v′ and s ′ in
this δ � 1 limit in terms of the drift. Once the gust reaches the cascade, however,
an additional unsteady (irrotational) field is generated by the blocking of the gust
momentum by the rigid blade surfaces, and by the interaction of the gust with the
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mean-flow gradients. This unsteady irrotational flow can be described in terms of the
velocity potential

εU∞b∗h(φ, ψ) exp(ik[kzz − t − M2
∞φ/β2

∞]) exp(δM2
∞q), (2.10)

where h(φ, ψ) is termed the modified potential and δq is the perturbation in the
mean-flow speed produced by the cascade. Since we will take kδ = O(1), it follows
that the divergence of the drift associated with convection towards the leading-edge
stagnation point, which occurs in a region of size O(δ2) around the stagnation point,
does not affect the leading-order expansion of the unsteady field.

An equation for h(φ, ψ) has been derived by Kerschen & Myers (1986) in the form

(∇2 + k2w2 + δL1)(h) = δkS(φ, ψ) exp(ikΩ), (2.11)

where

w2 = (M∞/β2
∞)2 − (kz/β∞)2. (2.12)

The operator L1 accounts for refraction of sound by the non-uniform flow, and is
given by

L1(h) = (γ + 1)M4
∞β−2

∞

{
q

[
∂2h

∂ψ2
+ 2ikβ−2

∞
∂h

∂φ
+ k2(w2 + β−4

∞ )

]

− ∂q

∂φ

[
∂h

∂φ
− ikβ−2

∞ h

]}
− 2k2w2β2

∞qh, (2.13)

where γ is the ratio of specific heats. The source term S(φ, ψ) exp(ikΩ) in (2.11)
corresponds to the interaction between the gust and the local mean-flow gradients –
see equation (2.5) of Myers & Kerschen (1995).

When k � 1 the mean flow varies slowly on the gust wavelength scale, except
in local regions of size O(k−1) surrounding each leading edge. The primary sound
generation is concentrated in these local leading-edge regions (see § 3). Outside these
local regions, the source term S(φ, ψ) exp(ikΩ) and the boundary condition on the
blade surfaces generate only particular solutions that are not related to the sound
field – see equations (3.28) and (3.29) of Myers & Kerschen (1995). The sound field is
a complementary outer solution of (2.11) which satisfies the no-penetration boundary
condition on the airfoil surfaces,

∂h

∂ψ
+ δM2

∞
∂q

∂ψ
h = 0. (2.14)

For our flat-plate airfoils we have ∂µ/∂φ = 0 on the blade surfaces. Then, applying
the Cauchy–Riemann equations to F (ζ ) we can see that ∂q/∂ψ = 0, so that the exact
boundary condition on the blade surfaces is simply

∂h

∂ψ
= 0. (2.15)

This result will also be used throughout our subsequent analysis.
Finally, in what follows we will need to calculate the unsteady pressure

ερ∞U 2
∞p(φ, ψ) exp(ik[kzz − t]), (2.16)

and this pressure is given in terms of the modified unsteady velocity potential by

p =

[
i

k

β2
∞

h − ∂h

∂φ

]
exp(−ikM2

∞φ/β2
∞). (2.17)
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3. Leading-edge fields
In this section we simply summarize those results from Myers & Kerschen (1995)

and (I) which will be required later.
For k � 1, the sound generation is concentrated in local regions of size O(k−1)

surrounding each leading edge. In each local region, sound is generated by blocking
of the gust velocity by the blade surface, and by the volume source distribution
S(φ, ψ) exp(ikΩ). Note that the lengthscales of the mean flow and the gust become
comparable in these local leading-edge regions, so that the gust is distorted ‘rapidly’
leading to efficient sound generation. Sound is generated by both the unsteady
force distribution on the blade surface and the Reynolds’ stress fluctuations in the
local leading-edge region. Vorticity distortion plays an important role in both sound
generation mechanisms. This interaction is essentially equivalent to the isolated-blade
problem analysed by Myers & Kerschen (1995).

Outside the local leading-edge regions, the gust distortion is ‘slow’ and is therefore
an inefficient sound generation mechanism. Thus, the sound field in the outer region
is a complementary solution of (2.11). The determination of the radiated sound then
reduces to a problem in the theory of matched asymptotic expansions, with inner
regions around each leading edge and an outer region comprising the rest of space.
Matching of the outer region with each leading edge produces an outgoing radiation
field with modified velocity potential of the form

D(θn)

k3/2r1/2
n

exp(ikwrn + ikδP (rn, θn) + inσ ′ + ikδgl). (3.1)

Here, (rn, θn) are polar coordinates in φ–ψ space centred on the leading edge of blade
n with 0 � θn < 2π, and the modified inter-blade phase angle is σ ′ = σ + kM2

∞d/β2
∞.

The quantity kδgl is the drift experienced by the gust in convecting from upstream
infinity to the leading edge, and the phase distortion term kδP (rn, θn) corresponds to
the refraction experienced by the radiation as it propagates away from the leading
edge through the non-uniform steady flow. We have δP (rn, θn) = V (θn)Q(rn, θn), where

V (θ) = −β2
∞w +

(γ + 1)M4
∞

2β2
∞w

(β−2
∞ − w cos θ)2, (3.2)

and

Q(rn, θn) = Re{exp(−iθn)[δF (rn exp(iθn))]}. (3.3)

The directivity D(θ) = D0(θ)+ δk1/2D1(θ) is given in Myers & Kerschen (1995) and in
(I). We can see from (3.1) that non-zero mean loading acts to introduce a significant
O(kδ) phase change into the field radiated from each leading edge, as well as modifying
the directivity – the directivity D(θ) is the zero-mean-loading result D0(θ), plus a
correction of size O(δk1/2).

Once the radiation described by (3.1) has been emitted from each leading-edge
region, it will potentially undergo a complicated interaction with the other blades in
the cascade before reaching the observer in the far field upstream. In fact, it is shown
in (I) that the radiation reaching the upstream observer contains four components:

(i) the direct field, which propagates from each leading edge directly to the observer
without interacting with any other blades;

(ii) two rays from a given leading edge propagate in opposite directions along the
front face of the cascade, and are rescattered by each of the other leading edges
before reaching the observer;
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(iii) one ray from a given leading edge is reflected by the blade immediately below,
and is then rescattered by the leading edge from which it originated before reaching
the observer, and this process continues indefinitely;

(iv) in the case of a staggered cascade, the radiation corresponding to the first three
contributions can also reach the observer via a single reflection off the lower blade.

It is also shown in (I) that other contributions, such as rescattering of radiation
from the leading edges by the trailing edges, can be neglected in calculating the
upstream radiation to the asymptotic order in k and δ considered, so that (i)–(iv)
provide the leading-order approximation to the upstream radiation. In short, the
upstream radiation is generated by an effective acoustic source located at each blade
leading edge (contributions i–iii), together with the radiation from the image of this
source in the lower blade (contribution iv).

In this paper, we are concerned with extending these results to calculate the unsteady
field in the passages between the blades and downstream of the cascade. In order
to do this we must first consider the radiation which emanates from each leading
edge in the downstream direction, which will subsequently be multiply reflected by
the adjacent blades and scattered by the trailing edges. It was shown in (I) that the
radiation emanating from the leading edge of blade n (i.e. contributions i–iii above)
has unsteady velocity potential

f (φn, ψn) ≡ g(θn)

r1/2
n

exp(ikwrn + ikδP (rn, θn) + inσ ′), (3.4)

where

g(θn) = k−3/2

{
D(θn) exp(ikδgl) − iB1w sin α

k1/2
D0(θn, w cos α)

+
iwB2 sin α

k1/2
D0(θn, −w cos α) +

iwB3

k1/2
D0(θn, 0)

}
(3.5)

with

B1 =

∞∑
m=1

{
D(π + α) exp(ikwm∆ + imσ ′ + ikδgl)

m3/2∆1/2

}
,

B2 =

∞∑
m=1

{
D(α) exp(ikwm∆ − imσ ′ + ikδgl)

m3/2∆1/2

}
,

B3 =

∞∑
m=1

{
D(3π/2) exp(2ikwms + ikδmp2 + ikδgl)

m3/2(2s)1/2

}
,




(3.6)

and where φn, ψn are centred on the leading edge of blade n. In (3.5), the first
term D(θ) corresponds to the direct field which propagates to the point (rn, θn)
(contribution i), the terms B1,2 correspond to the radiation which first emanated from
the leading edges of blades n ± 1, n ± 2, . . . respectively, before being rescattered
by leading edge n (contribution ii), and the term B3 corresponds to the radiation
emitted from the leading edge of blade n and repeatedly re-reflected by blade n − 1
(contribution iii). The quantity kδp2 in B3 is the net phase distortion (due to the
mean-flow perturbation) experienced by the radiation in a single bounce from blade
n to blade n − 1 and back; an expression for p2 is given in (I). It turns out that the
mean flow perturbation induces no net phase distortion for radiation propagating
from one leading edge to the next, so that no such terms appear in B1,2. We note
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Figure 3. Schematic diagram of a typical ray path in φ–ψ space undergoing multiple
reflections between blades 0 and 1. Note how the dotted ray from leading edge 0 is not
reflected by blade 1.

that the full form of the directivity, D(θ), is required in the first term in (3.5), while in
the remaining terms, which are O(k−1/2) smaller, only the simpler zero-mean-loading
directivity D0(θ) is required to the asymptotic order considered.

4. The cut-on duct modes between the blades
We now proceed to determine the downstream-propagating field between adjacent

blades, which originates from the effective sources at the leading edges as described
in the previous section.

4.1. Image sources

For definiteness we consider the passage between blades 0 and 1, with the field in
other passages being given by the quasi-periodicity condition (2.9). As has already
been described, sound is generated at the leading edges of blades 0 and 1, and will
then propagate downstream between the blades. We consider an observer at the point
(φ, ψ) located in the blade passage, and note that sound from the leading edges will
reach the observer not only directly but also via multiple reflections off the two rigid
blades. The situation is described schematically in figure 3. There is an infinite number
of possible ray paths from the leading edge of blade 1 to the observer, involving an
arbitrarily large number of bounces between the blades, while only a finite number of
such paths can reach the observer from leading edge 0 (thanks to the cascade stagger,
rays from leading edge 0 which leave at a sufficiently oblique angle are not reflected
by blade 1).

The reflected fields will be represented by an array of image sources above and
below the blades, exactly in parallel to the work of Yee, Felsen & Keller (1968), who
used the method of images to describe the reflection of incident duct modes at the
end of a waveguide (see also Jones 1994 for a description of related problems). There
are two issues to consider here: first the location of the image sources, and second
the phase distortion experienced by the sound as it propagates along the bouncing
rays. The location of the image sources is straightforward. Boundary condition (2.15)
shows that the source at the leading edge of blade 0 has an image source in blade 1
located at (0, 2s), which will in turn have an image in blade 0 located at (0, −2s). This
sequence of images continues indefinitely, but as has already been argued the observer
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will receive radiation from only a finite number of them due to the cascade stagger.
The image fields associated with the source at leading edge 1 can be constructed in
exactly the same way, and this time the observer will receive contributions from all
the image sources.

The second issue to consider is the phase distortion along the bouncing ray direc-
tions. The phase distortion appears in the coordinate transformation (x, y) → (φ, ψ),
and in the influence of the operator L1 in (2.11). Since δ � 1, the leading-order ray
paths in φ–ψ space are simply straight lines, and the phase distortion due to L1 is
then obtained by integrating along the leading-order ray paths, say from point ζa to
ζb, leading to the expression (Myers & Kerschen 1995)

kδP (ζb, ζa) = kδV (θ)Re{exp(−iθ)[F (ζb) − F (ζa)]}, (4.1)

where θ is the angle between the line segment from ζa to ζb and the positive φ-
direction. Consider first radiation which is emitted from the leading edge of blade
0, and which propagates to the point ζ = φ + iψ in φ–ψ space, having first been
reflected n times by blade 1 and n − 1 times by blade 0. This reflected field can be
represented by an image source located above the blade passage in φ–ψ space at the
point ζn = i2ns, and the ray that reaches the end point ζ then makes an angle −θ with
the φ-axis, where θ = tan−1[(2ns − ψ)/φ]. The complete ray path from the leading
edge of blade 0 to the downstream point ζ can be split into a series of segments in
the φ–ψ plane as shown in figure 3, where the angles of the segments alternate in
sign. In order to determine the total phase distortion experienced by the radiation in
travelling from the leading edge of blade 0 to the point ζ along this path, we simply
add up the phase distortion along each line segment, and using (4.1) together with
the fact that V (θ) = V (−θ ), it follows that this phase distortion becomes

kV (θ)Re{exp(−iθ)[δF (X1) − δF (0)] + exp(iθ)[δF (Y1) − δF (X1)] + . . .

+ . . .+exp(−iθ)[δF (Xn) − δF (Yn−1)] + exp(iθ)[δF (ζ ) − δF (Xn)]}, (4.2)

where the points Xi , Yi are shown in figure 3. Collecting terms involving δF (Xi) and
δF (Yi), it turns out that we need only the imaginary parts of these quantities, which
can be found from (2.7) as

Im{δF (Xi)} =
(2i − 1)sδ
β∞ tan θ

− dδ/β∞ + O(δ2), i = 1, 2, . . . n,

Im{δF (Yi)} = 2isδ
β∞ tan θ

+ O(δ2), i = 1, 2, . . . n − 1.


 (4.3)

The total phase distortion experienced in travelling from the leading edge of blade 0
to the observer point along the path shown in figure 3 is denoted ℘2, and using (4.2)
and (4.3) we find

℘2 = kδV (θ)

[
2n∆

β∞
sin(α − θ) + Re{exp(iθ)F (ζ )}

]
. (4.4)

The phase distortion, ℘1, experienced by a wave emitted from leading edge 0 which
is reflected n times by both blade 0 and blade 1, is calculated similarly. The relevant
image source in this case is located below the blade passage at ζn = −i2ns, and the
ray angle is θ = tan−1[(2ns + ψ)/φ]. We then obtain

℘1 = −kδV (θ)

[
2n∆

β∞
sin(α + θ) − Re{exp(−iθ )F (ζ )}

]
. (4.5)



Mean loading 109

Similar results can be derived for the phase distortions experienced by radiation
emitted from the leading edge of blade 1; ℘3 is the phase distortion for a ray which
is reflected n times by blade 0 and n − 1 times by blade 1, while ℘4 is the phase
distortion for a ray reflected n times by both blades.

We are now in a position to write down an expression for the field at given point
in the blade passage. The unsteady velocity potential takes the form

N−∑
m=0

∫ ∞

−∞

g(θ0)

r
1/2
0

exp(ikwr0 + i℘1)δ(ξ − ψ − 2ms) dξ

+

N+∑
m=1

∫ ∞

−∞

g(θ0)

r
1/2
0

exp(ikwr0 + i℘2)δ(ξ + ψ − 2ms) dξ

+

∞∑
m=1

∫ ∞

−∞

g(θ1)

r
1/2
1

exp(ikwr1 + iσ ′ + i℘3)δ(ξ + ψ + (2m − 1)s) dξ

+

∞∑
m=0

∫ ∞

−∞

g(θ1)

r
1/2
1

exp(ikwr1 + iσ ′ + i℘4)δ(ξ − ψ + (2m + 1)s) dξ, (4.6)

where the polar coordinates (rn, θn) relative to blade n are now

rn(ξ ) = [(φ − nd)2 + ξ 2]1/2, θn(ξ ) = cos−1 [(φ − nd)/rn(ξ )] , n = 0, 1, (4.7)

with 0 <θ0 <α and 3π/2 < θ1 < 2π. The first two terms in (4.6) correspond to sound
which originated at leading edge 0: the first term contains the direct ray plus
contributions from the image sources below blade 0, while the second term contains
contributions from the image sources above blade 1. The integers N± represent the
maximum number of reflections which radiation from leading edge 0 can undergo
in its passage to the observer; N+ corresponds to the radiation which experiences its
final reflection en route to the observer from the upper blade, and N− corresponds
to radiation which experiences its final reflection from the lower blade. From simple
geometrical arguments it is easy to see that N± are the largest integers smaller than
(φ tan α ± ψ)/2s respectively; for an unstaggered cascade, N± are infinite. The third
and fourth terms in (4.6) represent sound emanating from leading edge 1: the third
term contains contributions from the images lying below blade 0, while the fourth
term contains the direct ray plus contributions from the images lying above blade 1.
As has already been noted, an infinite number of these image sources contribute to
the radiation reaching the observer, since in this case there is no upper limit on the
possible number of reflections along the ray path.

The phase distortions along the ray paths are represented by the terms ℘i, i =
1, 2, 3, 4, in (4.6), and now take the form

℘1 = kδV (θ0)

[
Re{exp(−iθ0)F (ζ )} − (ξ − ψ)

(
sin(α + θ0)

β∞ sin α

)]
,

℘2 = kδV (θ0)

[
Re{exp(iθ0)F (ζ )} + (ξ + ψ)

(
sin(α − θ0)
β∞ sin α

)]
,

℘3 = kδV (θ1)

[
Re{exp(iθ1)F (ζ )} + (ξ + ψ − s)

(
sin(α − θ1)
β∞ sin α

)]
,

℘4 = kδV (θ1)

[
Re{exp(−iθ1)F (ζ )} − (ξ − ψ + s)

(
sin(α + θ1)
β∞ sin α

)]
.




(4.8)



110 N. Peake and E. J. Kerschen

In addition to the reflected components, the observer will also receive sound which
has been generated at a given leading edge and then diffracted by the other edge.
Note, however, that the leading-edge fields already contain the first rescattering of the
direct field from a given leading edge, so that any subsequent diffraction is O(kw)−1/2

smaller than the reflected fields already described, and is therefore ignored in our
analysis.

4.2. Modal structure

Equation (4.6) shows that the downstream-propagating field between the blades can
be represented by an infinite superposition of cylindrically decaying wave fields, and
our aim is now to convert this into the more usual representation as a summation
over duct modes. We will only be concerned with calculating the coefficients of the
cut-on duct modes, and to do this it will prove convenient to take the limit of large
φ, so that N± ∼ N in equation (4.6) with N the integer part of (φ tan α/2s). Since the
coefficients of the duct modes are necessarily independent of position along the duct,
it follows that the values obtained by taking φ large are equally valid for φ = O(1),
including at the trailing edge where the cut-on duct modes are scattered into radiation
downstream.

We apply Poisson’s formula (see Jones 1966 p. 137 and Davies 1985 p. 108) in the
form

1
2
(f (N ) − f (0)) +

N−1∑
n=0

f (n) =

∞∑
m=−∞

∫ ∞

−∞
f (x) exp(i2mπx)[H(x) − H(x − N )] dx (4.9)

for an arbitrary function f (x), where H(x) is the unit step function. We now swap the
order of summation and integration in (4.6), apply (4.9), swap the order of summation
and integration back and then make the substitution ξ = φη in the first two integrals
and the substitution ξ = (φ − d)η in the second two integrals. Equation (4.6) then
becomes

1

s

{
1

φ1/2

∞∑
m=−∞

∫ tan α

0

g(tan−1 η)

(1 + η2)1/4
exp (φf1(η)) dη cos(mπψ/s)

+

∞∑
m=−∞

exp(imπ + iσ ′)

(φ − d)1/2

∫ 0

−∞

g(tan−1 η)

(1 + η2)1/4
exp ((φ − d)f2(η)) dη cos(mπψ/s)

}
, (4.10)

where

f1,2(η) = ikw(1 + η2)1/2 ∓ imπη/s. (4.11)

The two terms in (4.10) represent sound that emanates from the leading edges of
blades 0 and 1, respectively. The arguments of the directivity function g(θ) represent
emission angles; the branches of the inverse tangent functions must be chosen such
that θ = tan−1 η lies in the range 0<θ0 <α for the first term, and 3π/2 < θ1 < 2π for
the second term. The factor exp(imπ) in the second term of (4.10) has arisen from the
fact that the leading edge of blade 1 is located on ψ = s.

In order to evaluate the integrals in (4.10) asymptotically, we suppose that
k(φ − d) � 1 and apply the method of stationary phase; it is easy to show that
the exponentials in the two integrands in (4.10) possess stationary phase points at

±πm/(k2w2s2 − m2π2)1/2 (4.12)

respectively, which lie on the real axis for |m| <p, where p is the largest integer
smaller than kws/π. Moreover, the stationary point can only lie within the ranges of



Mean loading 111

integration if m > 0. By applying the method of stationary phase to (4.10) we then
find, after some considerable algebra, that the modified unsteady velocity potential
takes the form

p∑
n=0

{
An

u + An
l

}
Mn(φ, ψ) exp(−iknφ), (4.13)

where the amplitudes are

An
l =

εn exp(iπ/4)(2πkw)1/2

(k2w2s2 − n2π2)1/2
g(χn)H(α − χn),

An
u =

εn exp(iπ/4)(2πkw)1/2

(k2w2s2 − n2π2)1/2
g(2π − χn) exp(iσ ′ + inπ + iknd + iκn),


 (4.14)

the axial duct wavenumbers are

kn = −(k2w2 − (nπ/s)2)1/2, (4.15)

with associated mode angle χn = cos−1(−kn/kw), the modal functions Mn(φ, ψ) are

Mn(φ, ψ) = cos

[
nπψ

s
+ Θn(φ, ψ)

]
exp(iΞn(φ, ψ)), (4.16)

and the phase distortions are

Θn(φ, ψ) =
kδV (χn) sin χn

β∞

[
ψ

tan α − φ

]
+ kδV (χn) sin χnIm[F (ζ )],

Ξn(φ, ψ) =
kδV (χn)
β∞ cos χn

[
ψ cos2 χn − φ sin2 χn

tan α

]
+ kδV (χn) cos χnRe[F (ζ )],

κn =
kδV (χn)∆

β∞ sin α cos χn [cos2 α − cos2 χn].




(4.17)

It is well known that the field between the blades is in fact composed of an infinite
superposition of duct modes with φ wavenumbers kn, n = 0, 1, . . . , but for n > p

we see that kn is imaginary, and the duct mode is cut off and does not propagate
downstream from the leading-edge region. We have presented only expressions for
the cut-on mode amplitudes, since it is only the cut-on duct modes which will interact
with the cascade trailing edges, and which will therefore be required when we come
to predict the radiation downstream of the cascade.

4.3. Discussion of modal results

We note that Θn(φ, ψ), Ξn(φ, ψ) and κn in (4.17) are O(kδ), and are therefore
significant, and that in deriving (4.17) we have neglected terms of O(δ). It is easy to
show that, when δ = 0, the modal function Mn(φ, ψ) reduces to the uniform-flow
duct mode cos(nπψ0/s0). It is not at first sight clear that the new modal functions
Mn(φ, ψ) have zero normal velocity on the blades, i.e. that ∂Mn/∂ψ = 0 to the
asymptotic order considered on ψ = 0, ψ = s. However, using the expression (2.7)
for the value of Im[F ] on the blade surfaces, it can be shown that Θn(φ, ψ) = 0
and ∂Ξ (φ, ψ)/∂ψ = 0 on ψ = 0, ψ = s, from which the required normal-velocity
condition follows immediately.

In order to interpret the corresponding phase distortions we first note that the
terms involving Re[F (ζ )] and Im[F (ζ )] in (4.17) have arisen from the distortion
of the waves as they propagate between their last reflection by the blades and the
observer (this is clear from the derivation of the expressions for ℘2 etc.), while the
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other terms in (4.17) arise from the previous multiple reflections between the blades.
We consider first the plane-wave case n= 0, in which to leading order the wave
propagation direction is aligned parallel to the φ-axis (since χ0 = 0), and in physical
space therefore parallel to the steady-flow streamlines. Clearly Θ0(φ, ψ) = 0, and we
can therefore say immediately that Θn(φ, ψ) corresponds to the distortion of the
cross-stream wavenumber which arises as a result of the propagation of the wave in
the cross-stream direction, and this interpretation is of course confirmed by the fact
that Θn(φ, ψ) ∝ sin χn. In contrast, we note that only the second term in Ξn(φ, ψ)
vanishes for n = 0, and it follows that the first term in Ξn(φ, ψ) is the distortion of
the cross-stream wavenumber arising from streamwise propagation, while the second
term is the distortion which arises from cross-stream propagation (and is therefore
absent for n = 0).

The amplitude factor An
u for the radiation from the upper leading edge contains

several additional phase factors. The term σ ′ arises from the global periodicity
property of the solution, the term nπ arises from the basic symmetry property of the
mode of order n, and the term knd accounts for the streamwise displacement of the
upper leading edge relative to the lower. These three phase terms are O(k) and are
present for the case δ = 0 as well. The last term in the phase, κn, is O(kδ) and is
an additional phase distortion for the waves emitted from the upper leading edge,
related to the fact that the steady flow is asymmetric about the duct centreline when
δ �= 0.

We note that (4.13) possesses a jump discontinuity when χn = α, which corresponds
to the coincidence between the propagation angle and the front face of the cascade.
The expression is also non-uniform at duct mode cut-off, because the stationary-
phase point (4.12) then approaches infinity. This effect occurs for both non-zero mean
loading and uniform flow, but the cut-off condition differs in each case. For δ �= 0
the cut-off condition is n = kws/π, compared to the zero-mean-loading condition
n = kws0/π. It is easy to show that s = ∆∗β∞ sin(α∗ − δ)/b∗, so that for acute α∗
we have s < s0. It therefore follows that one effect of non-zero mean loading is to
potentially change the number of modes which are cut on between the blades; if
α∗ < π/2 is kept fixed then increasing the mean loading will reduce the number of
cut-on modes.

It is interesting to consider the evolution of the duct modes far downstream. If
we were to suppose that the blades continue indefinitely in the downstream direction
(which is of course not the case in practice), then the steady flow would approach a
uniform stream aligned parallel to the blades. The speed of this steady flow can be
found conveniently by applying mass conservation to the incompressible flow in the
Prandtl–Glauert plane, in which the cascade has stagger angle α and inclination δβ−1

∞
to the upstream flow. Far downstream, we then find the values

δq = − δ

β∞ tan α
, δµ = − δ

β∞
, δF (ζ ) =

[
iδ

β∞
− δ

β∞ tan α

]
ζ+ const. (4.18)

From (4.17) it follows that downstream Θn(φ, ψ) → 0, and that the duct modes take
the form

cos

[
nπψ

s

]
exp

[
i

(
kw cos χn − ikδV (χn)

β∞ tan α cos χn

)
φ

]
. (4.19)

These are precisely the modes for a duct containing the uniform downstream flow;
this can be verified by standard duct acoustic formulae, or by the dispersion relation
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formed from the homogeneous version of (2.11), using (2.13) with δq , δµ given by
(4.18).

Finally, we consider modes which are close to cut-off, in which case n is close to
kws/π and χn is close to π/2. Such modes propagate almost perpendicular to the
stream, and therefore experience a considerable number of multiple reflections and
cross-stream phase distortion before reaching the observer. Indeed, we can see that
the phase distortion Ξn(φ, ψ) becomes large, and in fact diverges as

− kδV (π/2)φ

β∞ tan α cos χn , (4.20)

and will become significant compared to the leading-order φ phase term φkw cos χn.
(We note that, since Θn remains bounded as χn → π/2, the distortion to the ψ

phase term remains uniformly smaller than the leading-order term nπψ/s.) For the
two-dimensional case kz = 0, the sign of V (π/2) is negative for M∞ < 0.59 while it is
positive for M∞ > 0.59. Thus, for M∞ < 0.59 the phase distortion (4.20) acts to increase
the φ wavenumber, while for M∞ > 0.59 this term acts to decrease the φ wavenumber.
In the latter case the phase distortion involved in the repeated reflections has the
effect of tilting the phase vector of a nearly cut-off mode closer to the cross-stream
direction. By looking at the expression (4.19) for the modal structure far downstream,
it is therefore clear that a mode which is already close to cut-off near the leading edges
will be propagating even closer to the cross-stream direction as it propagates further
downstream. This is an important fact, because it suggests that modes which are cut
on near the start of the blade passage can become cut off further down the blade
passage, and must therefore turn round and propagate back upstream. Of course, the
stationary-phase analysis used to determine the modal structure is non-uniform at
χn = π/2, since then the stationary-phase point approaches infinity (see (4.12)), and
further work needs to be done to derive a uniform asymptotic approximation for this
process.

We will see in § 6 that the number of radiation modes cut on downstream of the
cascade can differ from the number cut on upstream of the cascade. This difference
arises from the change in inclination of the steady flow to the front face of the
cascade which is induced by the mean loading. It is not related directly to the issue of
duct modes turning round somewhere along the blade passage. This can be seen by
noting that the radiation-mode wavenumbers (6.28) are determined by the periodicity
property (2.9) of the cascade, while the duct-modes wavenumbers (4.15) are determined
by the boundary condition (2.15) on the blade surfaces.

5. Downstream formulation
In the next section we will calculate the sound field downstream of the cascade,

but before we do this it will be necessary to make a transformation from the
present φ–ψ coordinates based on the upstream steady flow to new potential–
streamfunction coordinates based on the downstream steady flow. The need for
this transformation can be seen by noting that, although the steady flow through the
cascade approaches its upstream and downstream limits exponentially rapidly, these
two limits are different. Therefore, while the perturbation potential F (ζ ) approaches a
constant value far upstream, it grows linearly in ζ far downstream, leading to a secular
term which obscures the modal structure of the downstream radiation. Indeed, we
believe that one of the key features of any cascade noise prediction method is that the
cut-off frequencies of the radiation modes are predicted correctly. The coordinates of
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§ 2 lead to exact expressions for the modal cut-off frequencies upstream (see (I)), but
the presence of the secular term mentioned above means that we need to introduce
new coordinates to obtain the exact cut-off frequencies downstream. Moreover, φ is
discontinuous across the blade wakes in physical space, and for convenience it is
sensible to introduce coordinates which vary continuously downstream. It should be
noted that the cascade not only turns the oncoming flow, but also changes the steady-
flow Mach number and density, and this means that as well as changing coordinates it
will also prove convenient to use the downstream, instead of the upstream, steady-flow
speed and density to non-dimensionalize physical variables.

5.1. Downstream steady flow

We denote the downstream steady speed and density and the inclination of the
blades to the downstream flow by Ū∞, ρ̄∞ and δ̄ respectively, and in what follows
an overbar will be used to denote downstream variables. First, we introduce physical
coordinates (x̄∗, ȳ∗) aligned with the downstream steady flow, which are obtained by
rotating the upstream axes (x∗, y∗) through an angle δ − δ̄ in the clockwise sense
(see figure 1), but with origin at the trailing edge of blade 0. We then transform to
potential–streamfunction coordinates based on the downstream flow,

ψ̄ =
β̄∞U∞
β∞Ū∞

ψ,

φ̄ = U∞
Ū∞

(φ − l+ + mΓ ) when ms̄ � ψ < (m + 1)s̄.


 (5.1)

These new coordinates have been chosen so that the trailing edges of the upper and
lower surfaces of a given blade map onto the same point in φ̄–ψ̄ space, with the
origin at the trailing edge of blade 0. Mathematically, these new coordinates have
the effect of transferring the branch cut associated with the blade circulation from
downstream of the trailing edges to upstream (each leading edge now maps onto
two points in φ̄–ψ̄ space), and are therefore exactly analogous to the trailing-edge
coordinates adopted for the single airfoil by Myers & Kerschen (1995). The physical
cascade then maps onto a cascade in φ̄–ψ̄ space (see figure 4), with stagger angle ᾱ

and trailing-edge separation ∆̄, where ᾱ and ∆̄ are obtained from (2.2) and (2.3) by
replacing δ and β∞ by δ̄ and β̄∞, respectively. The trailing edge of blade m is mapped
to (φ̄, ψ̄) = (md̄, ms̄), where d̄ = ∆̄ cos ᾱ, s̄ = ∆̄ sin ᾱ.

As in § 2, the steady flow through the cascade can be determined by thin-
airfoil theory and conformal mapping. Here, however, we utilize a Prandtl–Glauert
transformation based on the downstream flow, and it follows that the velocity potential
and streamfunction have the expansion

ζ̄ = ζ̄0 + δ̄F̄ (ζ̄0), (5.2)

where ζ̄ = φ̄ + iψ̄ , ζ̄0 = φ̄0 + iψ̄0 = (x̄∗ + iβ̄∞ȳ∗)/b∗ and the arbitrary constant in
F̄ (ζ̄ ) is chosen such that F̄ (0) = 0. Since ζ̄ = ζ̄0 + O(δ̄), the mean flow perturbation
is given by

q̄ − iµ̄ =
dF̄ (ζ̄ )

dζ̄
, (5.3)

where the normalized flow speed is U∗/Ū∞ = 1+ δ̄q̄ and the flow angle is δ̄β̄∞µ̄. From
the inclination of the blades to the downstream flow, it is clear that µ̄ = −1/β̄∞ on
the blade surfaces, and the imaginary part of (5.3) can then be integrated to give the
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Figure 4. The cascade geometry in φ̄–ψ̄ space. The ray paths of the downstream direct
and reflected rays are illustrated.

value of Im[F̄ ] on blade m in the form

Im[F̄ ] =
(φ̄ − md̄)

β̄∞
. (5.4)

This result will be utilized in calculating the phase distortions in the downstream
field.

The upstream and downstream steady flow fields are related by the conservation
relations

ρ̄∞Ū∞ sin(α∗ − δ̄) = ρ∞U∞ sin(α∗ − δ),

−Γ U∞b∗ = ∆∗[U∞ cos(α∗ − δ) − Ū∞ cos(α∗ − δ̄)].

}
(5.5)

These results are exact and follow by considering a channel formed by adjacent
stagnation streamlines and the corresponding blades; the first equation comes from
mass conservation, while the second is obtained by integrating round this contour in
the clockwise direction and using the definition of blade circulation. The circulation
is determined from the conformal mapping by applying the Kutta condition at the
trailing edge. Then, linearizing (5.5) about the upstream flow and using general
relations for small-perturbation isentropic flow, the flow deflection across the cascade
is

δ̄ − δ = Γβ∞ sin α/∆. (5.6)

The upstream flow area associated with a single blade passage is ∆∗ sin(α∗ − δ), while
the downstream flow area is ∆∗ sin(α∗ − δ̄). The downstream mean flow quantities
Ū∞, ρ̄∞ and M̄∞ are then given, in terms of the corresponding upstream quantities
and the passage area ratio, by the relations for one-dimensional isentropic flow.

The mean flow perturbation due to the cascade dies off exponentially with distance
downstream (based on the lengthscale ∆̄), so that F̄ (ζ̄ ) reaches its downstream
asymptotic limit F̄ (∞) quite rapidly. The quantity F̄ (∞) depends on the cascade
parameters, and can be determined from the conformal mapping. In fact, δ̄F̄ (∞) is
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a measure of the phase distortion experienced by the downstream radiation – cf.
equation (5.20) of (I). In practice, the cascade acts to turn the incoming flow, so that δ̄

is always smaller (and perhaps even much smaller) than δ. Thus, the phase distortion
introduced in propagation from the cascade to the downstream region is much less
than that introduced in propagation from the cascade to the upstream region.

5.2. Downstream unsteady flow

In parallel with (2.10) and (2.17), the total unsteady velocity potential and the unsteady
pressure are now written in terms of the new, downstream modified potential h̄(φ̄, ψ̄)
in the form

εŪ∞b∗h̄(φ̄, ψ̄) exp([ik̄[k̄zz − t̄ − M̄2
∞φ̄/β̄2

∞]) exp(δ̄M̄2
∞q̄) (5.7)

and

ερ̄∞Ū 2
∞

[
i

k̄

β̄2
∞

h̄ − ∂h̄

∂φ̄

]
exp(ik̄[k̄zz − t̄ − M̄2

∞φ̄/β̄2
∞]) (5.8)

respectively. Here t̄ = Ū∞t∗/b∗ and k̄ = ω∗b∗/Ū∞ are the new non-dimensional time
and gust reduced frequency, respectively. The relation between the downstream and
upstream reduced frequencies is simply k̄ = kU∞/Ū∞. Note also that the spanwise
wavenumber is unaffected by the coordinate transformation, so that k̄k̄z = kkz.

It is then necessary to re-express the duct-mode field (4.13) in terms of trailing-edge
coordinates. The duct-mode propagation angle and streamwise wavenumber change
by O(δ) amounts in transforming between the upstream and downstream Prandtl–
Glauert spaces. For the duct mode of order n, the propagation angle χ̄ n satisfies
k̄w̄ sin χ̄ n = nπ/s̄, and the corresponding streamwise wavenumber is k̄n = −k̄w̄ cos χ̄ n,
where w̄ is obtained by replacing the upstream variables by the corresponding
downstream variables in (2.12). After some algebra it turns out that the unsteady
velocity potential of a single duct mode from (4.13), in the passage between blade 0
and blade 1, takes the form

Ān cos

[
nπψ̄

s̄
+ Θ̄n

]
exp(−ik̄nφ̄ + ik̄δ̄Fn), (5.9)

where

k̄δ̄Fn(φ̄, ψ̄) = Ξ̄n(φ̄, ψ̄) + φ̄

(
k̄M̄2

∞

β̄2
∞

− Ū∞kM2
∞

U∞β2
∞

− k̄w̄ cos χ̄ n +
Ū∞

U∞
kw cos χn

)
,

(5.10)

and where the complex amplitude is given by

Ān =
(
An

u + Au
l

)
exp(−il+[kn + kM2

∞/β2
∞]). (5.11)

In deriving (5.9) we have neglected small terms of size O(δ) in the expansion of
the amplitude Ān (so for instance a factor ρ∞U 2

∞/ρ̄∞Ū 2
∞, arising from the change

in the pressure normalization between upstream and downstream coordinates, has
been set equal to unity). We have Θ̄n(φ̄, ψ̄) ≡ Θn(φ, ψ) and Ξ̄n(φ̄, ψ̄) ≡ Ξn(φ, ψ),
corresponding to the cross-stream and streamwise phase distortions induced by
propagation though the non-uniform flow. The total streamwise phase distortion
term k̄δ̄Fn(φ̄, ψ̄) also contains additional terms corresponding to the change in the
effective duct mode angle, Mach number and reduced frequency when transforming
from upstream Prandtl–Glauert space to downstream Prandtl–Glauert space. The
phase factor in the amplitude (5.11) comes from replacing φ by φ̄ in (4.13).
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Figure 5. Schematic diagram of downstream radiation for a single duct mode, and the Fresnel
regions emanating from each edge, for the case χ̄n < ᾱ. (For clarity, only the regions associated
with the upward-propagating component of the duct mode are shown; the corresponding
regions for the downward-propagating component have been omitted.) In region A the
radiation is dominated by direct radiation from the passages. The Rayleigh distance, where
the Fresnel regions from adjacent edges overlap, is denoted B, while far downstream of B the
field is dominated by the diffracted fields from each edge.

6. Downstream radiation
We now move on to consider the downstream radiation. There are significant

differences in the nature of the downstream radiation, relative to the upstream
radiation analysed in (I). For the upstream radiation, the sound is effectively produced
by point sources at the leading edge of each blade; the primary issue is then the
conversion of this infinite set of cylindrical wave fields into the propagating plane-
wave modes for the uniform flow upstream of the cascade. In contrast, the sound
source for the downstream radiation is the duct modes propagating down the blade
passages, and their scattering by the trailing edges. The field in the near downstream
region is dominated by direct radiation of duct-mode ‘beams’ from the rear of the
blade passages. However, Fresnel regions appear along the edges of these beams,
associated with the diffraction of the incident duct modes by the trailing edges. The
width of these Fresnel regions grows with distance downstream, and they eventually
spread to completely encompass the duct-mode beams, at a distance O(k). Further
downstream the beams essentially disappear, and the radiation is dominated by the
diffraction fields from each trailing edge. This process is shown schematically in
figure 5, and the detailed analysis will be presented as follows:

§ 6.1 The near-downstream region, dominated by direct radiation from the passages,
marked A in figure 5.

§ 6.2 The diffracted field produced by scattering at the lower trailing edge of each
passage.

§ 6.3 The diffracted field produced by scattering at the upper trailing edge of each
passage.

§ 6.4 The far-downstream field produced by the merging of the fields from adjacent
trailing edges.
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§ 6.5 The total cascade radiation, produced by summing contributions from each
passage, in both region A and far downstream of region B in figure 5.

6.1. Radiation from a single blade passage for r̄ = O(1)

First consider the field radiated from the blade passage between blades 0 and 1, for
downstream distances r̄ = O(1). In this region, marked ‘A’ in figure 5, the downstream
field is a simple extension of the duct-mode field that exists within the blade passage.
The expression for a single duct mode of order n is given by (5.9). Writing the cosine
in terms of exponentials, it can be seen that the duct mode is a superposition of two
nearly planar waves propagating at angles ±χ̄ n with respect to the φ̄-axis, which are
repeatedly reflected and re-reflected by the blades. The downstream radiation pattern
is different, depending on whether the duct-mode propagation angle χ̄ n is less than
or greater than the cascade stagger angle ᾱ, and these two cases will be discussed
separately.

For the case χ̄ n < ᾱ, the field at O(1) distances downstream of the cascade consists
of two beams, extending into the downstream region at angles ±χ̄ n. The modified
potential for this field has the form

Ān

2

[
{H (φ̄ + ψ̄ cot χ̄ n) − H (φ̄ − d̄ + (ψ̄ − s̄) cot χ̄ n)} exp(ik̄w̄[φ̄ sin χ̄ n − ψ̄ cos χ̄ n]

+ ik̄δ̄[Fn(φ̄, ψ̄) − Θ̄n(φ̄, ψ̄)])

]
+

Ān

2

[
{H (φ̄ − d̄ − (ψ̄ − s̄) cot χ̄ n) − H (φ̄ − ψ̄ cot χ̄ n)}

× exp(ik̄w̄[φ̄ sin χ̄ n + ψ̄ cos χ̄ n] + ik̄δ̄[Fn(φ̄, ψ̄) + Θ̄n(φ̄, ψ̄)])

]
, (6.1)

where the first set of terms in large square brackets corresponds to a downward-
propagating beam of width ∆̄ sin(ᾱ + χ̄ n), while the second set of terms in large
square brackets corresponds to an upward-propagating beam of width ∆̄ sin(ᾱ − χ̄ n).
For a staggered cascade, the upward-propagating beam is narrower than the
downward-propagating beam. Note that the width of the upper beam approaches
zero as χ̄ n → ᾱ. Within the two beams, the phase distortion due to the mean flow
variations is given by k̄δ̄[F̄n(φ̄, ψ̄) ∓ Θ̄n(φ̄, ψ̄)]. The mean flow perturbation dF̄ /dζ̄

decays to zero exponentially with distance downstream, so that the phase distortion
functions approach their asymptotic downstream values within about one passage
width downstream of the cascade. The asymptotic values for F̄n and Θ̄n are obtained
by replacing F̄ (ζ̄ ) with F̄ (∞).

For χ̄ n > ᾱ, the upward beam is completely blocked by the lower surface of blade 1.
In this case the downstream edge of the downward-propagating beam is determined
not by the location of the trailing edge of blade 1, but rather by the location where the
wave that is reflected from the trailing edge of blade 0 is re-reflected by blade 1. The
width of the downward-propagating beam in this case is 2s̄ cos χ̄ n, and the modified
potential takes the form

Ān

2
{H (φ̄ + ψ̄ cot χ̄ n) − H (φ̄ + (ψ̄ − 2s̄) cot χ̄ n)} exp(ik̄w̄[φ̄ sin χ̄ n − ψ̄ cos χ̄ n]

+ ik̄δ̄[Fn(φ̄, ψ̄) − Θ̄n(φ̄, ψ̄)]). (6.2)

The comments following (6.1) concerning the O(k̄δ̄) phase distortion terms are appli-
cable here as well.

In addition to the beams contained in (6.1) and (6.2), the downstream field for a
single passage also contains cylindrically spreading waves associated with diffraction
of the duct mode by the trailing edge of blade 0, and also by the trailing edge of
blade 1 for the case χ̄n < ᾱ. These diffracted fields are calculated in the following
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subsection. We will also show that the diffraction process generates Fresnel regions
along the edges of the beams, which serve to smooth the discontinuities present in
(6.1) and (6.2).

6.2. Scattering by the lower trailing edge

The component of the duct mode propagating at angle −χ̄ n impinges on the trailing
edge of the lower blade for all values of χ̄ n, and this scattering process will be
considered first. For χ̄ n < ᾱ, the component of the duct mode propagating at angle
χ̄ n impinges on the trailing edge of the upper blade, and this scattering process will
be considered in the next subsection. For χ̄ n > ᾱ, the component of the duct mode
propagating at angle χ̄ n does not reach the trailing edge of the upper blade, so that
the duct mode is scattered only by the trailing edge of the lower blade of the passage.

First consider the scattering of the duct mode by the trailing edge of the lower
blade. For definiteness, we consider the passage lying between blades 0 and 1. To
analyse the diffraction field generated by this interaction, we consider an inner region
of size O(1/k) around the trailing edge, and introduce the inner coordinates Φ̄ = k̄φ̄,
Ψ̄ = k̄ψ̄ . The inner expansion of the duct mode (5.9) consists of an incident plane
wave propagating at angle −χ̄ n and a reflected plane wave propagating at angle χ̄ n.
The total field in the inner region then consists of the incident and reflected plane
waves in Ψ̄ > 0, supplemented by a scattered field H̄ (Φ̄, Ψ̄ ).

Expanding (2.11) in the inner region, following Myers & Kerschen (1995), it can
be shown that the modified potential H̄ (φ̄, ψ̄) satisfies the homogeneous Helmholtz
equation

∂2H̄

∂Φ̄2
+

∂2H̄

∂Ψ̄ 2
+ w̄2H̄ = 0, (6.3)

where w̄ is obtained by replacing the upstream variables by the corresponding
downstream variables in (2.12). In contrast to the leading-edge flow, we see that to
the asymptotic order considered there are no volume sources in the vicinity of the
trailing edge, essentially due to the fact that the local steady flow satisfies the Kutta
condition, and therefore possesses much weaker gradients than are present at the
leading edge. (We also note that no radiation is generated when the convected gusts
pass the trailing edge, since the gusts are convected with the local free-stream speed
and induce no pressure fluctuations. Further discussion can be found in Myers &
Kerschen 1995.)

The combination of incident and reflected plane waves satisfies the boundary
condition (2.15) on the upper surface of blade 0. Therefore, the scattered field satisfies
the homogeneous boundary conditions

∂H̄

∂Ψ̄
(Φ̄, ±0) = 0 for Φ̄ < 0 (6.4)

on the upper and lower surfaces of blade 0.
The combination of incident and reflected waves produces a non-zero pressure field

on Ψ̄ = +0,

∆pn exp(i[w̄ cos χ̄ n − M̄2
∞/β̄2

∞]Φ̄), (6.5)

where

∆pn = i

(
k̄n +

k̄

β̄2
∞

)
Ān exp(−ik̄nl+ + ik̄δ̄Fn(0, 0)). (6.6)

Equation (6.5) has been derived by noting that, when determining the unsteady
pressure from the modified velocity potential, the φ̄ derivatives of Ξ̄n(φ̄, ψ̄) and
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Θ̄n(φ̄, ψ̄) can be neglected in our high-frequency limit. Also, we have used the fact
that close to the trailing edge, and to the asymptotic order considered, we can make
the replacement Ξ̄n(φ̄, 0) → Ξ̄n(0, 0). The scattered field must cancel this pressure
jump, leading to the boundary condition(

i
k̄

β̄2
∞

H̄ − k̄
∂H̄

∂Φ̄

) ∣∣∣∣
Ψ̄ =+0

Ψ̄ =−0

= −∆pn exp(iw̄ cos χ̄ nΦ̄) for Φ̄ > 0. (6.7)

In general, vorticity can be shed from the trailing edge and therefore H̄ (Φ̄, Ψ̄ ) and
∂H̄/∂Φ̄ are discontinuous across Ψ̄ = 0 for Φ̄ > 0. However, the normal velocity is
continuous across the trailing vortex sheet, so that

∂H̄

∂Ψ̄

∣∣∣∣
Ψ̄ =+0

Ψ̄ =−0

= 0 for Φ̄ > 0. (6.8)

Finally, the unsteady Kutta condition applies at the trailing edge, so that the first-order
derivatives of H̄ (Φ̄, Ψ̄ ) must be finite in the vicinity of Φ̄ = Ψ̄ = 0.

The same boundary-value problem is solved in Myers & Kerschen (1995); additional
phase factors are present in their formulation (see equations (3.47, 48) of that paper).
These phase factors arise in their work from the exponential term exp(−ikM2

∞φ/β2
∞)

in the relationship between the total unsteady velocity potential and h (see our
(2.10)), but are absent here since the corresponding phase factor in our definition
(5.7) involves the variable φ̄ based on the downstream flow. Of course, the solutions
for physical quantities, such as the total unsteady potential and the pressure, are
exactly equivalent.

The scattered potential H̄ (Φ̄, Ψ̄ ) can be determined using Fourier transform
methods and the Wiener–Hopf technique. The solution is

H̄ (Φ̄, Ψ̄ ) =
i(2w̄)1/2

4πk̄
sgn(Ψ̄ )∆pn cos 1

2
χ̄ n

∫ ∞

−∞

exp
(
−iΦ̄λ − |Ψ̄ |(λ2 − w̄2)1/2

)
(λ − w̄)1/2(λ + β̄−2

∞ )(λ + w̄ cos χ̄ n)
dλ,

(6.9)

where the square roots in the integrand are defined by introducing branch cuts
parallel to the imaginary axis and joining ±w̄ to infinity through the upper and lower
half-planes, with the values of the square roots at the origin being taken as negative
imaginary. The inversion contour passes above the poles at λ = −β̄−2

∞ and −w̄ cos χ̄ n.
Therefore, these poles contribute for Φ̄ > 0. The residue of the first pole produces
the vortex sheet that is shed from the trailing edge. For Ψ̄ < 0, the residue of the
second pole produces the downward-propagating plane wave of (6.1) and (6.2), while
for Ψ̄ < 0 it cancels the upward-propagating reflected plane wave component of the
original duct mode.

The method of steepest descents is now used to evaluate the outer limit of the inner
potential (6.9), which is then matched onto an outgoing cylindrically decaying ray
field in the outer region in exactly the same way as described in Myers & Kerschen
(1995). We find that the outer unsteady potential from blade zero is then

f̄ 0(φ̄0, ψ̄0) =
∆pn

r̄
1/2
0

T (χ̄ n, θ̄0)

(cos χ̄ n − cos θ̄ 0)
exp(ik̄w̄r̄0 + ik̄δ̄P̄ (r̄0, θ̄0)) (6.10)

where, in anticipation of work in a later section, we have introduced the superscript 0
to indicate that this field is produced by scattering from the trailing edge of blade 0.
Here, r̄0, θ̄0 are polar coordinates in φ̄–ψ̄ space with the origin at the trailing edge of
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blade 0, and −π < θ̄ < π. The directivity function is T (χ̄ n, θ̄)/(cos χ̄ n − cos θ̄), where

T (χ̄ n, θ̄) =
exp(i3π/4) cos 1

2
χ̄ n sin 1

2
θ̄

(2πk̄3w̄)1/2(β̄−2
∞ − w̄ cos θ̄)

. (6.11)

The directivity function has been written in this form for convenience in the following
subsection. The amplitude of the cylindrical scattered field is weaker than the
amplitude of the duct mode that generated it by a factor k̄−1/2, as can be seen
from the denominator of (6.11), while the direct beams of (6.1) have the same scaling
as the duct mode. The phase term k̄δ̄P̄ (r̄ , θ̄) corresponds to the distortion experienced
by the radiation as it propagates away from the trailing edge. Using (4.1) and noting
that F̄ (0) = 0, we have

δ̄P̄ (r̄ , θ̄) = V̄ (θ̄ )Re{exp(−iθ̄ )δ̄F̄ (r̄eiθ̄ )}, (6.12)

where V̄ (θ) simply corresponds to V (θ) but with M∞ replaced by M̄∞ – see (3.2). It
therefore follows that δ̄P̄ is continuous across the blade wake.

Note that the directivity function is singular at θ̄0 = ∓χ̄0, corresponding to the
boundaries of the downstream- and upstream-propagating beams which originate at
the trailing edge of blade 0. This singularity arises from the coalescence of the saddle
point with the pole at λ = −w̄ cos χ̄ n in the asymptotic expansion of (6.9), and is
necessary in order for the scattered field to recover the amplitude scaling of the direct
beams in these directions. A uniformly valid expression, as in Myers & Kerschen
(1995, equation (3.51)), can be written down using the formula of Jones (1986, p. 720).
This expression contains a complementary error function, which describes Fresnel
regions of width O(r̄0/k̄)1/2 along the directions θ̄0 = ±χ̄ n, surrounding one of the
boundaries of the upper and lower beams of (6.1) – see figure 5. These Fresnel regions
act to smooth out the step discontinuities in (6.1). The width of these Fresnel regions
is small compared to the beam widths when r̄0 � k̄. However, when r̄0 reaches O(k̄),
the Fresnel regions have spread to encompass the full width of the beams (region B
in figure 5), and an alternative description is required. This alternative description is
developed in § 6.4.

For a staggered cascade, the scattered field f̄ 0 from trailing edge 0 propagates
directly to the far field for angles −π + ᾱ < θ̄ 0 < ᾱ, while for angles ᾱ < θ̄ 0 < π/2 the
scattered field is reflected off the lower surface of blade 1 before propagating to the far
field along the direction −θ̄ 0 (see figure 4). As was argued at the end of § 2, the zero-
normal-velocity boundary condition on each blade reduces simply to ∂h̄/∂ψ̄ = 0, and
it therefore follows that the reflection of this direct field from trailing edge 0 by the
lower surface of blade 1 can be accounted for by including an image source with
modified potential f̄ 0(φ̄0, 2s̄ − ψ̄0). The reflected field f̄ 0

r can be expressed in the form

f̄ 0
r (φ̄

0, ψ̄0) = [H (θ̄ 0r + ᾱ) − H (θ̄0r + π/2)]
∆pn

r̄
1/2
0r

T (χ̄ n, θ̄0r )

(cos χ̄ n − cos θ̄ 0r )

× exp(ik̄w̄r̄0r + ik̄δ̄P̄r (φ̄
0, ψ̄0)), (6.13)

where

r̄0r = [(φ̄0)2 + (2s̄ − ψ̄0)2]1/2, θ̄0r = − cos−1(φ̄0/r̄0r ), (6.14)

and −π/2 < θ̄ 0r < −ᾱ. The phase distortion along the reflected path,

k̄δ̄P̄r (φ̄
0, ψ̄0) = k̄δ̄V̄ (θ̄0r )[2∆̄ sin(θ̄ 0r + ᾱ)/β̄∞ + Re{exp(−iθ̄ 0r )F̄ (φ̄0 + iψ̄0)}], (6.15)
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is calculated by applying (4.1) from trailing edge 0 to the point of reflection on
blade 1, and then from that point to the observer location (points A, B and C in
figure 4). Note that, for φ̄0 = O(1), the angles θ̄ 0 and θ̄0r for the direct and reflected
paths to the observer location are different, and it is θ̄ 0r that enters in the phase
distortion k̄δ̄P̄r .

6.3. Scattering by the upper trailing edge

Next we consider scattering of the duct mode of order n by the trailing edge of
the upper blade. The upward-propagating component of the duct mode (5.9) reaches
the trailing edge of the upper blade only when χ̄ n < ᾱ, as explained previously. The
scattered field that is produced by this process is calculated in exactly the same way
as has been described above. For definiteness, we again consider the duct mode in
the passage between blades 0 and 1. The final result is

ḡ1(φ̄1, ψ̄1) = −∆pn

r̄
1/2
1

T (χ̄ n, θ̄ 1) exp(inπ − ik̄nd̄ + ik̄δ̄Dn)

(cos χ̄ n − cos θ̄ 1)
exp(ik̄w̄r̄1 + ik̄δ̄P̄ (r̄1, θ̄1)).

(6.16)

Here we have used the symbol ḡ to distinguish the field produced by scattering of the
duct mode at the upper trailing edge from the field f̄ produced by scattering of the
duct mode at the lower trailing edge. We have also introduced the superscript 1 to
indicate that in this case the field is produced by scattering from trailing edge 1; r̄1, θ̄1

are polar coordinates centred on the trailing edge of blade 1. The additional phase
factor that appears in (6.16) is the phase of the incident duct mode at the location
of the upper trailing edge, relative to the lower trailing edge. The first term in this
additional phase factor arises from the anti-symmetry of the modes about the duct
centreline for odd values of n, while the second term arises from the cascade stagger;
these terms would also be present in uniform flow. The third term

k̄δ̄Dn = k̄δ̄[Fn(d̄, s̄) − Fn(0, 0)] (6.17)

is related to phase distortion of the duct mode by the non-uniform mean flow. Note
that the weak mean flow variation has led to an O(1) change in the phase of the
duct mode at the upper trailing edge, relative to the lower trailing edge. The first
minus sign on the right-hand side of (6.16) arises because in this case the pressure
field of the incident and reflected plane waves exists in the region below, rather than
above, the blade. The scattered field ḡ1 is singular in the directions θ̄1 = ±χ̄ n. Again,
this singularity can be removed by a uniformly valid asymptotic expansion involving
complementary error functions, which serves to introduce Fresnel regions along the
two remaining boundaries of the direct beams of (6.1).

The scattered field f̄ 0 from trailing edge 0 has one ray that propagates at the angle
θ̄0 = ᾱ and therefore impinges on trailing edge 1, while the scattered field ḡ1 from
trailing edge 1 has one ray that propagates at the angle θ̄ 1 = −π + ᾱ and therefore
impinges on trailing edge 0. These rays are re-scattered by the trailing edges that they
impinge on, producing new rays that are subsequently re-scattered by the opposite
trailing edge and this pattern continues indefinitely. The ray emanating from trailing
edge 0 at angle θ̄0 = π/2 undergoes a similar re-scattering process (see item iii in the
discussion of the leading-edge rays in § 3). However, the amplitude of the re-scattered
field is reduced by one power of k̄−1/2 at each stage in the infinite sequence of
re-scattering processes. Hence, these re-scattering processes can be neglected in our
high-frequency limit k̄ � 1.
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Therefore, for χ̄ n < ᾱ and φ̄ = O(1), the downstream field for radiation from a
single blade passage consists of the direct beams (6.1) of amplitude k̄−2, supplemented
by the scattered fields f̄ 0 and ḡ1 of amplitude k̄−5/2. For a staggered cascade a
portion of the scattered field f̄ 0 is reflected by blade 1 as described by (6.13), and
this component also has amplitude k̄−5/2.

Next consider the case χ̄ n > ᾱ. Here, the upward-propagating component of the
duct mode does not reach the trailing edge of the upper blade in the passage, as was
explained in the derivation of (6.2). Hence, the contribution ḡ1 does not arise in this
case. For the scattered field f̄ 0 from the trailing edge of the lower blade, the singularity
of the directivity function at θ̄ 0 = χ̄ n lies along the reflection boundary for the lower
blade, which is then re-reflected by the upper blade, forming the downstream edge of
the single beam of (6.2). When the expression (6.10) for f̄ 0 is replaced by a uniformly
valid expression, the Fresnel region along θ̄0 = χ̄ n is reflected by the upper blade and
acts to smooth the downstream edge of the direct beam (6.2). Therefore, for χ̄ n > ᾱ

and φ̄ = O(1), the downstream field for radiation from a single blade passage consists
of the single downward-propagating beam (6.2) of amplitude k̄−2, supplemented by
the scattered field f̄ 0 and its reflection (6.13) by the upper blade, both of amplitude
k̄−5/2.

6.4. Radiation from a single blade passage for r̄ � k̄

When the distance r̄ along the duct-mode beams of (6.1) or (6.2) reaches O(k̄), the
Fresnel regions surrounding the edges of the beams have spread to encompass the
whole width of the beams (region B in figure 5). As the field propagates farther
downstream, the constant-amplitude beams disappear and the field exhibits the r̄−1/2

decay of a cylindrical wave field in all directions. In contrast to the near downstream
field at O(1) values of φ̄ where the dominant source is the direct duct-mode beams,
the dominant source for the far-field radiation is the scattering of the duct mode by
the trailing edges of the blades.

First consider the case χ̄ n < ᾱ. Here, the duct mode of order n is scattered by the
trailing edges of both the lower and upper blades of the passage. The far downstream
field produced by radiation of the order-n duct mode out of the passage between
blades 0 and 1 is then given by the superposition of the scattered fields f̄ 0 and
ḡ1, plus the reflected field f̄ 0

r . Since we are considering the far field r̄ � k̄, to the
required order of accuracy we can set θ̄1 = θ̄ 0r = θ̄ 0, r̄1 = r̄0 − ∆̄ cos(θ̄ 0 − ᾱ), and
r̄0r = r̄0 − 2s̄ sin θ̄0, where the O(1) terms in r̄1 and r̄0r need be retained only in the
phase. In addition, noting that the mean flow variations in the vicinity of the cascade
die off exponentially with distance downstream, we can replace the phase distortion by
its asymptotic value P̄ (r̄ , θ̄) = P̄ (∞, θ̄ ) = V̄ (θ̄ )Re[exp(−iθ̄ )F̄ (∞)]. Combining (6.10),
(6.13) and (6.16), we then obtain

f̄ 0(φ̄0, ψ̄0) + ḡ1(φ̄1, ψ̄1) + f̄ 0
r (φ̄

0, ψ̄0) =
∆pn

r̄
1/2
0

Ta(χ̄
n, θ̄0) exp(ik̄w̄r̄0 + ik̄δ̄P̄ (∞, θ̄0)),

(6.18)
where

Ta(χ̄
n, θ̄0) =

T (χ̄ n, θ̄0)

cos χ̄ n− cos θ̄ 0

[
1− exp(−ik̄w̄∆̄[cos(θ̄ 0−ᾱ)− cos χ̄ n cos ᾱ]

+ inπ + ik̄δ̄Dn)+ [H (θ̄ 0r + ᾱ)−H (θ̄ 0r + π/2)] exp(−ik̄w̄2s̄ sin θ̄ 0

+ ik̄δ̄2∆̄V̄ (θ̄0) sin(θ̄ 0 + ᾱ)/β̄∞)

]
(6.19)
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and we consider −π + ᾱ < θ̄ 0 < ᾱ. The directivity pattern, Ta(χ̄
n, θ̄0), for radiation

from a single blade passage in the case χ̄ n < ᾱ, is seen to have the basic directivity
pattern T (χ̄ n, θ̄)/(cos χ̄ n −cos θ̄ ) for an isolated trailing edge, modified by interference
between the waves from trailing edges 0 and 1, and by additional interference from
the wave reflected off the lower surface of blade 1 for angles −π/2 < θ̄ 0 < −ᾱ.

As already noted, f̄ 0 and ḡ1 are singular when θ̄ 0,1 = ±χ̄ n. For the near downstream
region, these singularities are related to the edges of the beams of (6.1) and uniformly
valid expansions are required in order to remove these non-uniformities. The situation
is quite different in the far field r̄0 � k̄. Here the constant-amplitude beams of (6.1)
have disappeared, and a fixed observation point in the downstream region corresponds
to nearly identical values for θ̄0 and θ̄1. We note that the singularities of f̄ 0 and ḡ1

are of equal magnitude but opposite sign – this suggests that the singularities may
cancel.

To examine this, first consider the behaviour Ta in the vicinity of the angles
θ̄ 0 = ±χ̄ n for the case δ̄ = 0. These angles are outside the boundaries of the reflected
field f̄ 0

r , so the second line of (6.19) can be ignored. Noting that k̄w̄ sin χ̄ n = nπ/s̄,
it can be verified that the factor in the large square brackets in (6.19) vanishes for
θ̄0 = ±χ̄ n. Hence, in the absence of mean flow distortions, the singularities of f̄ 0 and
ḡ1 cancel identically in the far field, leading to a cylindrically decaying field for all
observation angles.

When δ̄ �= 0, however, the factor in the large square brackets in (6.19) vanishes
when θ̄0 = θ̄±, say, which differ from ±χ̄ n by O(δ̄) amounts. The precise values of θ̄±
can be found in a straightforward manner, and are

θ̄+ = ᾱ − cos−1(cos(ᾱ − χ̄ n) + δ̄Dn/w̄∆̄),

θ̄− = ᾱ − cos−1(cos(ᾱ + χ̄ n) + δ̄Dn/w̄∆̄).

}
(6.20)

(The argument of the first exponential function in (6.19) is equal to zero when
θ̄0 = θ̄+, and is equal to in2π when θ̄ 0 = θ̄−.) As it stands, (6.19) is therefore singular
at θ̄ 0 = ±χ̄ n for δ̄ �= 0. However, to the asymptotic order considered we are free to
include corrections of relative size O(δ̄) in the amplitude of our acoustic fields, and it
follows that we can replace the denominator in (6.19) by

cos(χ̄n + B) − cos(θ̄ 0 + A) (6.21)

where A = −(θ̄+ + θ̄−)/2 and B = −χ̄ n + (θ̄+ − θ̄−)/2 are both O(δ̄). With this
replacement, the expression (6.19) is non-singular for all values of the observer angle
θ̄0, and the far field decays as r̄

−1/2
0 in all directions.

The cancellation of the singularities of f̄ 0 and ḡ1 at distances r̄ � k̄ is well known
for the case δ̄ = 0; this has been demonstrated by exact solutions of the scattering
problem for two parallel plates. When δ̄ �= 0, the variations of the mean flow and the
speed of sound have the effect of tilting the beams, by angles of size O(δ̄), away from
the duct mode propagation directions ±χ̄n. The fact that the beams are tilted by
differing amounts (i.e. in general θ+ �= −θ−) of course corresponds to the asymmetry
of the mean flow above and below each lifting airfoil.

Next consider the case χ̄ n > ᾱ. Here, the duct mode of order n does not reach the
trailing edge of the upper blade in the passage, so that we have only the scattered
field f̄ 0 from the trailing edge of the lower blade. The field f̄ 0 propagates directly
to the far field for angles θ̄ 0 < ᾱ, while for ᾱ < θ̄0 < π/2 it is reflected off the lower
surface of blade 1 and propagates to the far field along the direction −θ̄ 0. Thus, the
total field at large distances is the sum of the direct field f̄ 0 and the reflected field
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Figure 6. Plot of the far-field directivity pattern |Ta | for downstream radiation from a single
blade passage, for δ = 0.3 (solid line) and δ = 0 (dotted line). Here we have M∞ = 0.6, k = 10

∆∗/b∗ =
√

2, σ = π/2, α∗ = π/3 + δ, and the duct mode number is n = 1.

f̄ 0
r , which can be expressed in the form

f̄ 0(φ̄0, ψ̄0) + f̄ 0
r (φ̄

0, ψ̄0) =
∆pn

r̄
1/2
0

Tb(χ̄
n, θ̄0) exp(ik̄w̄r̄0 + ik̄δ̄P̄ (∞, θ̄0)), (6.22)

where

Tb(χ̄
n, θ̄0) =

T (χ̄ n, θ̄0)

cos χ̄ n − cos θ̄ 0

[
1−[H (θ̄ 0r + ᾱ)−H (θ̄ 0r +π/2)] exp(−ik̄w̄2s̄ sin θ̄ 0

+ ik̄δ̄V̄ (θ̄0)2∆̄ sin(θ̄ 0 + ᾱ)/β̄∞)

]
. (6.23)

The field f̄ 0 is singular in the direction θ̄0 = −χ̄ n, as noted previously. The scattered
field f̄ 0 is also singular in the direction θ̄ 0 = χ̄ n, but this ray is reflected by blade 1
and is contained in f̄ 0

r in (6.22). For δ̄ = 0, the argument of the exponential in (6.23)
takes the value in2π when θ̄ 0 = −χ̄ n, so that the singularity associated with the
shadow boundary in the direct field f̄ 0 is cancelled by the corresponding singularity
in the reflection of that direct field by blade 1, and Tb is non-singular. The effect
of δ̄ �= 0 is to adjust the angle of the beam to θ̄ 0 = θ̄ r , which differs from −χ̄ n by
an O(δ̄) amount, and which can easily be determined by setting the argument of the
exponential in (6.23) to the value in2π. In order to remove the spurious singularity for
the case δ̄ �= 0, we therefore once again introduce an O(δ̄) term into the amplitude,
this time by replacing the denominator in (6.23) by

cos θ̄ r − cos θ̄ 0. (6.24)

Plots of the directivity pattern |Ta| of the downstream radiation from a single blade
passage for the cases δ = 0 and δ = 0.3 are presented in figure 6. Results have been
plotted for −ᾱ < θ̄0 < ᾱ, which is the range of observer angles over which f̄ 0

r does not
contribute to (6.19). The n = 1 duct mode is considered; for the conditions chosen
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we have the duct-mode angle χ̄ n = 0.341, while θ̄+ = 0.360 and θ̄− = −0.326. The
presence of beams close to the directions θ̄± is clear in the figure. Note, however, that
the direction of maximum amplitude of the beams is potentially displaced slightly
from θ̄ = θ̄± because, in a familiar way, the numerator of (6.19) has local extrema
close to, but not precisely at, θ̄ = θ̄±. The lobular directivity pattern possesses a
local θ̄ wavelength governed by the argument of the exponential function in (6.19),
and it can be anticipated that the beam maxima lie within one quarter of this local
wavelength about θ̄ = θ̄±. Note also that, while the shift in the location of the
beams due to mean loading turns out to be relatively small for the case presented
in figure 6, the effect on the directivity shape is quite significant. The introduction of
mean loading has significantly augmented the beam above the horizontal (relative to
the case δ = 0), at the expense of the beam below the horizontal. This corresponds
to the fact that in trailing-edge space the cascade is closer to being unstaggered for
δ = 0.3 than it is for δ = 0 (ᾱ = 1.2482 and ᾱ = 0.9457 respectively), leading to a
pattern which is more symmetric about θ̄0 = 0.

6.5. Radiation downstream of the cascade

In § § 6.1–6.4, we considered the radiation from a single blade passage. We now
combine the fields from all the blade passages to determine the radiation downstream
of the cascade. We again consider the radiation due to a single duct mode of order n.
After the radiation for a single duct mode has been determined, the total downstream
field is obtained by summing over the cut-on duct modes, n = 0, 1, 2, . . . , p.

First consider the near downstream region (region A in figure 5). The distance
normal to the back face of the cascade is φ̄ sin ᾱ − ψ̄ cos ᾱ. We define the near
downstream region as distances small compared to k̄. For the near downstream
region, we showed in § 6.1 that the radiation from a single blade passage consists
of two constant-width beams (6.1) propagating in the directions ±χ̄ n when χ̄ n < ᾱ,
or a single beam (6.2) propagating in the direction −χ̄ n when χ̄ n > ᾱ. The radiation
from the cascade then consists of an infinite number of parallel beams, propagating
in these same directions. From the basic periodicity properties for the cascade, the
field which emanates from passage m (between blades m and m + 1) is identical to
that from passage 0, except for the introduction of a phase factor exp(imσ̄ ′), and a
shift of the origin to the trailing edge of blade m. Here σ̄ ′ = σ + k̄M̄2

∞d̄/β̄2
∞, where

d̄ = ∆̄ cos ᾱ.
For χ̄ n < ᾱ, the downward-propagating beams of width ∆̄ sin(ᾱ + χ̄ n) cover all of

downstream φ̄–ψ̄ space, and the upward-propagating beams of width ∆̄ sin(ᾱ − χ̄ n)
cover the full downstream space as well. A given point (φ̄, ψ̄) lies within only one
downward-propagating beam and one upward-propagating beam. The value of the
modified potential h̄(φ̄, ψ̄) can then be found by using simple geometry to determine
the passages from which the relevant downward- and upward-propagating beams
emanated, and employing the expressions for these beams given earlier.

For χ̄ n > ᾱ, the upward-propagating beams are blocked by the trailing edge of the
adjacent upper blade, and the downstream field for the cascade consists of an infinite
number of parallel downward-propagating beams of width 2∆̄ sin ᾱ cos χ̄ n, separated
by shadow regions of width ∆̄ sin(χ̄ n − ᾱ). Hence, for this case, a given downstream
point (φ̄, ψ̄) may lie in a beam or in a shadow region. Again, the value of the modified
potential can be found from simple geometry combined with (6.2) and the periodicity
property for the downstream field.

The scattered cylindrical fields from each trailing edge must be added to the primary
field consisting of the beams discussed above. These scattered fields were calculated
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in § § 6.2, 6.3. The amplitudes of the scattered fields are smaller than that of the
primary field by a factor k̄−1/2. Hence, the scattered fields are relatively unimportant
when considering points that lie within a beam of the primary field. The beams of
the primary field cover all of downstream space when χ̄ n < ᾱ, and we note that this
applies to well cut-on duct modes. For χ̄ n > ᾱ, a field point may lie in one of the
shadow regions; in this case the value of the modified potential is determined by the
scattered cylindrical fields. For near downstream locations, the nearby trailing edges
make the most important contributions to the scattered field, so that this component
is calculated most conveniently from the summation over blade index m in (6.25).

For far downstream distances, corresponding to φ̄ sin ᾱ − ψ̄ cos ᾱ � k̄, a quite
different picture emerges. Here (downstream of B in figure 5) the dominant
contribution to the field comes from the scattering of the duct modes by the trailing
edges. Expressions for the far downstream field produced by radiation of the duct
mode of order n from a single blade passage were developed in § 6.4, by properly
combining the effects of adjacent trailing edges. In constructing these expressions,
care was taken to cancel the singularities at θ̄m = ±χ̄ n in the directivity pattern for
scattering from a single trailing edge. These singularities arose from the neglect of the
finite width of the duct-mode beam in the local analysis of § § 6.2, 6.3, and are not
relevant to the far-field region. The total field downstream of the cascade, produced
by impingement of the cut-on duct mode of order n, can then be written in the
general form

h̄(φ̄, ψ̄) = ∆pn

∞∑
m=−∞

T(χ̄ n, θ̄m)

r̄1/2
m

exp(ik̄w̄r̄m + ik̄δ̄P̄ (∞, θ̄m) + imσ̄ ′). (6.25)

Here

r̄m = [(φ̄ − md̄)2 + (ψ̄ − ms̄)2]1/2, θ̄m = tan−1[(ψ̄ − ms̄)/(φ̄ − md̄)] (6.26)

are polar coordinates with origin at the trailing edge of blade m, and k̄δ̄P̄ (∞, θ̄m) is
the phase distortion induced by the mean flow variations in the vicinity of the cascade,
for propagation from the trailing edge of blade m to infinity along the direction θ̄m.
Note that the contribution from passage m is shifted by the phase factor exp(imσ̄ ′),
reflecting the periodic nature of the cascade field.

The function T(χ̄ n, θ̄m) is the directivity pattern for radiation from a single blade
passage, which was determined in § 6.4. When χ̄ n < ᾱ, the directivity function is Ta ,
modified according to (6.21), while for χ̄ n > ᾱ the directivity function is Tb, modified
according to (6.24).

Equation (6.25) contains the direct field from each trailing edge produced by
the scattering of the incident duct mode, and the reflection of each direct field by
the adjacent upper blade in the case of a staggered cascade. The direct radiation
from a single trailing edge (and its reflection by the adjacent upper blade for a
staggered cascade) is O(kw)−5/2; this can be seen from (6.11) and from the fact that
∆pn = O(1/kw). As well as being reflected by an adjacent blade, the direct field
from each trailing edge will also be re-scattered by the other trailing edges, in exactly
the same way as was described in (I) for the leading-edge field. These re-scattered
components could easily be included in our analysis, in almost exactly the same way
as was done in (I), but their inclusion here would only complicate the results, and
certainly adds no new insight, and we therefore choose to omit them. This is an
entirely consistent approach, since the re-scattered components are at most O(kw)−3,
and are therefore smaller than the direct field. In effect, we therefore include the first
two terms in the phase (of O(k) and O(kδ), respectively) and now just the first term
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in the amplitude of the downstream radiation. Note, however, that the first term in
the amplitude contains components that are proportional to kδ, so that the amplitude
has been modified by O(1) amounts due to the effects of mean loading.

While the infinite sum over blade index in (6.25) is convenient for calculating
the scattered field at close distances, it becomes poorly convergent far downstream
where a large number of blades are approximately equidistant from the observation
point. The field far downstream is most easily calculated by converting the infinite
sum of cylindrically decaying waves into a sum of plane-wave radiation modes.
This conversion is completed using Poisson summation in exactly the same way as
described in (I) for the upstream radiation, and which is indeed very similar to the
method described in § 4.2 of this paper for the field between the blades. We will
therefore state just the final result here; the modified unsteady potential in the far
field downstream of the cascade is

h̄(φ̄, ψ̄) = ∆pn

q̄∑
m=−r̄

Amn exp(−iσmx̄∗/b∗ − iηmβ̄∞ȳ∗/b∗), (6.27)

where the index m now corresponds to the mode order for the radiation modes in the
downstream region, rather than the blade index as in (6.25). The modal wavenumbers
are

σm =
[
(2mπ − σ̄ ′) cos ᾱ − [∆̄2k̄2w̄2 − (2mπ − σ̄ ′)2]1/2 sin ᾱ

]
/∆̄,

ηm =
[
(2mπ − σ̄ ′) sin ᾱ + [∆̄2k̄2w̄2 − (2mπ − σ̄ ′)2]1/2 cos ᾱ

]
/∆̄.

}
(6.28)

The transmission coefficients Amn are given by

Amn =
(2πk̄w̄)1/2 exp(iπ/4)T

(
χ̄ n, θ̄ s

m

)
[∆̄2k̄2w̄2 − (2mπ − σ̄ ′)2]1/2

exp(−iσmRe[δ̄F̄ (∞)]− iηmIm[δ̄F̄ (∞)])

]
, (6.29)

where

θ̄ s
m = tan−1(ηm/σm) with − π + ᾱ < θ̄ s

m < ᾱ (6.30)

corresponds to the propagation direction of the downstream mode. The phase term
in (6.29) arises simply from writing down the far-field form of φ̄ and ψ̄ . Equa-
tion (6.27) makes it clear that each of the cut-on duct modes (labelled n) in the blade
passages is scattered into each of the cut-on radiation modes downstream (labelled
m = −r̄ , . . . , q̄), with an amplitude equal to ∆pnAmn, emphasizing the fact that it is
the pressure jump at the trailing edge associated with each duct mode which generates
the radiation far downstream.

Only a finite number of the radiation modes are cut on, and therefore need to be
included in the far field, and the integers −r̄ and q̄ are such that these cut-on modes
satisfy −r̄ � m � q̄ . For the radiation mode with mode number m to be cut on
downstream of the cascade we require that |2mπ − σ̄ ′| <∆̄k̄w̄, while the condition for
radiation modes to be cut on upstream is that |2mπ − σ ′| <∆kw, and it is then easy
to see that the numbers of modes cut on ahead of and behind the cascade may be
different. It is well-known that the swirl induced by a blade row affects the number
of modes which are cut on. In the present analysis we have identified precisely the
role of the circulation Γ in altering the periodicity properties of the effective sources:
upstream the sources are located in φ–ψ space with stagger α, spacing ∆ and modified
inter-blade phase angle σ ′, while for the downstream flow they are located in φ̄–ψ̄
space with different stagger ᾱ, spacing ∆̄ and modified inter-blade phase angle σ̄ ′.
When δ = 0 the upstream and downstream parameters are identical, and the mode
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counts upstream and downstream become identical as well. The expression (6.29) is
singular whenever ∆̄2k̄2w̄2 = (2mπ − σ̄ ′)2, and it is easy to see that this is the cut-off
condition for the radiation modes and corresponds to the two critical cases θ̄ s

m = ᾱ

and θ̄ s
m = −π+ ᾱ, in which the modal propagation direction is aligned along the back

face of the cascade and the radiation does not propagate to the far field.
We note here that there is a clear connection between the wavenumbers in our two-

dimensional cascade model and the azimuthal order of the corresponding cylindrical
duct modes in an annular cascade model. If one considers the incident gust as having
been generated upstream by a rotating blade row of B blades, and if we suppose that
the cascade is part of a stator row of V vanes, then it is easy to see that the inter-blade
phase angle, σ , is just 2πNB/V for integer N . When we consider the scattered field,
(6.27), and resolve the wavenumbers in the direction along the face of the cascade,
we find that this leads to an azimuthal dependence exp(im̄θ), where the order m̄ for
each outgoing radiation mode is given by m̄ = NB − mV , where m is the cascade
mode index. This is exactly the famous Tyler & Sofrin (1962) result.

In order to demonstrate the possible effects of varying the mean loading on the
downstream unsteady flow, we consider a specific case in which M∞ = 0.6, k = 10,
∆∗/b∗ =

√
2, and α∗ = π/3 + δ. This corresponds to introducing mean loading by

rotating each blade in the cascade in the clockwise direction about its leading edge,
while holding the upstream mean flow fixed. When mean loading is introduced in
this way, the leading-edge spacing and cascade stagger angle in φ–ψ space take on
the values ∆ = 1.2083 and α = 0.9457, independent of δ. We consider values of
mean loading in the range 0 � δ � 0.3. Using the method described in § 5.1, for
δ = 0.3 we have δ̄ = 0.0561 and Ū∞ = 0.8602U∞, leading to the downstream reduced
frequency k̄ = 11.6252, while M̄∞ = 0.5114, ρ̄∞ = 1.0475ρ∞, and finally ∆̄ = 1.2316
and ᾱ = 1.2482. Comparing the values of δ and δ̄, it can be seen that most of the
mean flow turning occurs near the upstream side of the cascade, as a consequence of
the Kutta condition.

In figure 7 we choose δ = 0.3, and vary the inter-blade phase angle σ , which means
that the cascade parameters in trailing-edge space will remain fixed, but that the
propagation angles of the downstream modes, θ̄ s

m, will continuously rotate as σ is
varied. Two points are apparent from figure 7. First, the nulls in |A02| correspond
to the case in which the mode propagation angle θ̄ s

0 passes through zero, so that
from (6.11) the directivity here is exactly zero. Indeed, provided that χ̄ n �= 0 (i.e. we
are not considering the scattering of the plane-wave duct mode), then the amplitude
of a downstream radiation mode which propagates parallel to the far-downstream
steady flow is necessarily zero. This remains true even if multiple re-scattering of the
trailing-edge field were included, thanks to the sin 1

2
θ̄ directivity from any scattering

by a trailing edge. In the case χ̄ n = 0 (not shown in figure 7), the direction of
the downstream beam is close to θ̄ = 0 and the sin 1

2
θ̄ factor is cancelled by the

denominator in (6.19) to yield a finite and non-zero result for the amplitude. The
second point to be made from figure 7 is that the maximum in |A12| corresponds
to the coincidence between θ̄ s

1 and the beam direction θ̄− discussed in § 6.4. This
demonstrates how significantly larger modal amplitudes are to be expected when the
mode propagation direction is close to one of the beam directions θ̄±.

In figure 8 we set σ = π/2 to fix the upstream gust characteristics, and vary δ from
0 up to 0.3. For δ = 0 the cut-on mode numbers downstream are 0 � m � 2, while
for δ = 0.3 we have −1 � m � 2, so that one additional mode has become cut-on
downstream due to the mean loading. Because of the way in which the mean loading
is being varied, it follows that upstream the cut-on modes remain as 0 � m � 2
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Figure 7. Plot of the modal amplitudes |A02| (solid line) |A12| (dotted line) for δ = 0.3
and varying inter-blade phase angle σ , all other parameters as in figure 6.
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Figure 8. Variation in |Am1| as angle-of-attack to the upstream flow, δ, is increased for
m = 0, 1, 2, and σ = π/2, other conditions as in figure 6.

throughout, confirming the point made earlier that the flow turning can in this case
cut on additional modes downstream.

We can see in figure 8 that increasing the mean loading has a significant effect
on the downstream modal amplitudes. The values of |A11| and |A21| increase with δ,
while |A01| decreases. The null in |A01| just beyond δ = 0.3 corresponds to the m = 0
downstream mode becoming aligned with the downstream flow. The changes observed
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with varying δ are due to the variation of all the downstream flow parameters, but
by looking at the numbers at the beginning of this paragraph it becomes clear that
it is the variation in the effective stagger ᾱ which is having the biggest effect on the
radiation in this case. Another point, not apparent in the amplitude plots shown here,
is the fact that the additional phase distortion experienced by a given mode as it
propagates downstream from the cascade, as expressed by the term δ̄F̄ (∞) in (6.29),
will typically be small, due to the fact that the downstream flow will tend to be almost
aligned with the blade trailing edges (i.e. δ̄ is numerically much smaller than δ).

In summary, the results shown in this subsection emphasize once again, we believe,
the very significant effect that mean loading can have on the unsteady flow through
a cascade.

7. Concluding remarks
In this paper we have investigated the acoustic field generated by the interaction

between a cascade of airfoils at non-zero angle of attack and unsteady upstream
disturbances, with particular reference to the fields in the blade passages and
downstream of the cascade. For the high-frequency limit considered here, the noise
generation is concentrated in regions of size O(k−1) around each leading edge, and this
interaction has already been analysed in (I). In this paper our chief concern has been
with the way in which this sound interacts with both the blades and the non-uniform
steady flow. In particular, we have been able to analyse the complicated way in
which the multiply reflected ray paths experience phase distortions as they propagate
downstream through the non-uniform flow between the blades. This has led to an
analytical representation for the modified duct modes; since the non-uniform-flow
correction terms in these results are all O(1) in our preferred limit, the effects of the
blade incidence must be particularly significant.

At O(1) distances downstream of the cascade, the field is dominated by the direct
radiation of duct-mode beams out of the back of the cascade, and explicit expressions
for the field in this region, including the O(1) phase distortions due to non-uniform
mean flow effects, have been presented. These expressions could be utilized to consider
interactions with downstream obstacles, such as additional blade rows, struts, pylons
or the like. In situations where no obstacles are present downstream, propagation to
the far field is of interest. At distances of O(k) along the ray path, the Fresnel regions
along the edges of the duct-mode beams have spread to encompass the full width of
the beams, and a different representation is required. We have shown how the far-field
radiation modes can be recovered by a suitable coordinate transformation, and indeed
the modal cut-off conditions are reproduced exactly, and not just to O(δ) – since
cascade prediction schemes tend to be particularly sensitive near cut-off, we believe
that this is an important feature. We have identified a strong beaming effect, when
the downstream radiation modes propagate close to the corresponding duct-mode
directions corrected for the effects of non-uniform flow. Although our results are
non-singular when the radiation modes propagate along the beam directions referred
to above, our expressions for the downstream modal amplitudes are singular at cut-
off (as are the upstream modal amplitudes in paper (I)). Recently, Evers & Peake
(2002) have shown that these singularities can be smoothed out upstream, to produce
uniformly valid modal amplitudes for non-uniform flow (this has been completed by
introducing corrections into Peake & Kerschen’s (1995) uniformly valid solution for
uniform flow), and it can be anticipated that exactly the same approach would be
successful downstream as well.
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We note that while the solution presented here has been completed for flat-plate
airfoils at incidence, similar results for cambered blades with finite thickness can
also be found. The general structure of the downstream field (Fresnel regions and
beams) is certainly found, while qualitatively the modal structure between the blades
is also recovered. However, expressions for the duct modes with camber and thickness
included are less compact than those given in § 4. This is because the imaginary part
of the steady disturbance potential, Im[F ], on the blade surface will depend on the
detailed thickness and camber distributions of the blades, so that the phase distortion
experienced by the bouncing ray shown in figure 3, and given in equation (4.2), will
depend on the blade thickness and camber at each bounce. The relatively simple
expressions for ℘1−4 given in § 4.1 therefore become significantly more complicated.
The point about the downstream duct modes which are close to cut-off being turned
round by the non-uniform flow also pertains when thickness and camber are included,
and presumably the area variation of the blade passage associated with the thickness
and camber could make such a cut-off more likely.

Finally with regard to the inclusion of camber and thickness, Atassi (1984) has
shown that in incompressible flow the unsteady lift on a cambered, thick airfoil at
incidence can be written as a linear combination of contributions from the camber
and thickness distributions and the mean loading considered separately. This result
does not appear to carry over to our compressible case, however. Consider the
work of Myers & Kerschen (1997) for a cambered airfoil with zero thickness, say
incidence angle O(δi) and camber angle O(δc). In their equation (5.7) an expression
is given for the so-called leading-edge transition field on the blade surface. This can
be seen to contain the factor exp(ikσl), where σl = wr + σ1l and σ1l is given in their
equation (4.3a). (Note that their equation (4.3a) has a typographical error – it should
read V (θ), so that σ1l does not vanish on the airfoil upper surface θ = 0.) The
factor exp(ikσ1l) corresponds to the phase distortion experienced by the field from
the leading edge as it propagates along the curved blade surface, and it follows that
exp(ikσ1l) is of the form

exp(i[O(kwδi) + O(kwδc)]). (7.1)

Since Myers & Kerschen use the preferred limit kδi,c = O(1), it is clear that the
exponential (7.1) cannot be expanded for small argument, and the field on the blade
is nonlinearly dependent on δi and δc. Of course, if we were now to keep kδi,c = O(1),
but take the low-Mach-number limit (in the two-dimensional case by sending w → 0)
then the exponential in (7.1) could be expanded, and Atassi’s result of a field which
is linear in δi,c would be realised.
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